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FOREWORD

This final technical report concludes the study of low-cost forming influence on reinforced
thermoplastic mechanical properties contract for the Army Materials & Mechanics Research
Center (AMMRC), Watertown, Massachusetts, by the Boeing Vertol Company under Contract
DAAG46-79-C-0092.

Mr. Peter Dehmer was the Army Contracting Officer’s Technical Representative. The program was
conducted at the Boeing Vertol Company under the technical direction of Mr. Thomas W. Griffith,
Program Manager. Principal contributors were Donald J. Hoffstedt, Project Engineer; Donald J.

Toto; Lawrence C. Ritter; and Erwin Durchlaub.



SUMMARY

The following is a general summary of results for each of the tasks comprising this study
program. .

1. Task | — Literature Review and Oral Presentation

Development of hot melt preimpregnation has shown encouraging results with Udel polysul-
fone P-1700 and CM-1 polyarylsulfone.

Emergence of hot roll continuous impregnation from film and continuous fiber materials make
highly solvent resistant polymers candidates for further development.

Hot melt development is recommended with candidates offered by suppliers in film form.

2. Task |1 — Establish Relationship Between Processing Parameters and Selected Material
Properties

Time/Temperature/Pressure Variables — Utilizing a polysulfone matrix and Kevlar 49 aramid
fabric, specimens were fabricated to determine the experimental relationship between precon-
solidated laminate flexure strength versus postformed laminate flexure strength when exposed
to the forming parameters in Table 1. This relationship is described by:

{a) Flexural strength
(b) Modulus

{c) Interlaminar shear strength

Flexural Strength — Only those specimens postformed at the 450° F thermoforming tempera-
ture had increased flexural strength readings (up 5%) over the nonpostformed control group.
The group having the highest flexural strength readings below those of the control (10%
under control) were postformed at 500°F. All other higher temperature postformed

groups (5650°F, 600°F, 650°F) had flexural strength readings a minimum of 28% under the
nonpostformed control group. (NOTE: All percentage differences are based on ‘‘group
average’’ values.)

Generally, the test data indicated a definite decrease in flexural strength as thermoforming
{postforming) temperatures increase. This trend was unaffected by variations in post forming
pressure (vacuum only or vacuum plus light die pressure).

Modulus — Specimens postformed at the 500°F postforming temperatures had the highest
percentage increase (+23%) over the contro! group modulus values. Two other groups had
higher modulus values than the control group: 450°F postforming (+6.5%), 550° F postform-
ing (+15.5%). The two remaining postformed specimen groups had modulus values lower than
those of the nonpostformed control group: Postformed at 600°F (—1.8%), postformed at
650°F (—21.4%). (NOTE: All percentage differences were based on ‘‘group average’ values.)
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Interlaminar Shear Strength — Those specimens postformed at 450°F and using vacuum only

as the postforming pressure comprised the only group to attain higher interlaminar shear
strength readings than that of the nonpostformed control group. All other specimen groups
had shear strength readings a minimum of 15% under that of the control group. Although 9
out of the 10 specimen groups had shear strength readings less than those of the control

group, a trend of decreasing interlaminar shear strength with increasing thermoforming tempera-
ture, regardless of postforming pressure, became evident in the data compilation.

3. Task 11l — Determination of Simulated Repair and Maintenance {R&M) Solvent Effects on
Protected and Unprotected Laminates

Composite honeycomb sandwich test specimens were fabricated from thermoformed 2 ply
Kevlar 49 style 285 fabric/polysulfone and 2 ply Kevlar 49 type 285 fabric/polyphenylsulfone
using 1/2-inch thick Nomex honeycomb as the core material as outlined in Table 2. These
specimens were used to determine the solvent resistance of painted and unpainted laminates
as described by the effects on their flexure properties (flexural strength and stiffness “Ei’’).

Four-point flex testing of Udel {Polysulfone) and Radel (Polyphenylsulfone) sandwich beams
indicates higher overall flexure strength readings with Radel beams than Udel beams by some
14-15% regardless of paint and solvent effects. Conversely, stiffness “El’" values are 25-30%
higher in the Udel beams than the Radel beams, again ignoring paint and solvent effects.

Realistic exposure {application of a solvent soaked rag for two hours or until dry) had no
degrading effects on specimen flexural properties.

4, Task IV — Panel Fabrication

Six (6) 17.75" x 18.0" panels of 5 ply Kevlar 49 style 285 fabric (preimpregnated with P1700
polysulfone using methylene chloride solvent dispersal) were fabricated for testing by AMMRC.
One of the six panels is to be used as a control specimen, therefore, it had no postforming
operation. Each of the remaining five panels were thermoformed (postformed) at different
temperatures (450°F, 500°F, 550°F, 600°F, 650°F), but with the same postforming pressure
{Vacuum Plus Light Die Pressure).
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INTRODUCTION

Lightweight composite structure research and development for U.S. Army helicopter applica-
tions has centered largely around fiber-reinforced epoxy structures. The raw materials are more
expensive than current metallic raw materials and cost parity can only be achieved through
reduction in manufacturing costs of the details and assemblies. One promising approach for
helicopter structures is the use of reinforced thermoplastics rather than reinforced epoxy, since
investigations to date indicate that reduction in fabrication cost may be achieved with little

loss in mechanical properties.

This program attempts to define and evaluate the most suitable materials for application of low
elongation fiber reinforced thermoplastic laminates to helicopter secondary structures, {(adapt-

ing low cost commercial techniques currently used for unreinforced, chopped-fiber-reinforced,

and high elongation continuous fiber reinforced thermoplastics such as polyesters, acrylics and

polycarbonates) by determining the correlation between the mechanical properties of selected

fiber-reinforced thermoplastics and processing parameters in variants of vacuum-forming.

This program studies only the mechanical properties aspects of continuous fiber reinforced
thermoplastics and not the suitability of the material for thermoforming shapes other than
two dimensional forms.



TASK |
LITERATURE REVIEW AND ORAL PRESENTATION

This literature review is organized in the order of: definition of the areas of consideration,
general review of base polymer characteristics, review of existing data on low elongation con-
tinuous fiber reinforced thermoplastic R&D, and recommendations for current and future
material utilization and development.

1. MATERIAL AND FABRICATION CONSIDERATIONS

The areas of interest to this technology include matrix thermoplastic candidate systems,
fibrous reinforcements of interest, the processability of component systems into a total ma-
terial system, and the resulting physical and mechanical properties.

Some of the major attributes sought include low cost of base materials, good chemical resist-
ance to solvents encountered in military helicopter environment and depot maintenance actions,
low flammability smoke and toxicity hazard, low energy consumption in laminate consolida-
tion, adaptability to low cost postforming methods, and ability to reprocess formed parts if
unsatisfactory. Mechanical properties would be required to compare well with epoxy matrix
reinforced with similar fibers.

Matrix Materials

Specific task assignment is the review of matrix resin systems to include those listed below.

Polysulfone
Polyphenylsulfone

PKXA

Nylon

Polybutylene Terephthalate

Fibrous Reinforcements

The continuous fiber reinforcements listed below are of specific interest in this technology:

Kevlar 49 Tape
Kevlar 49 Fabric
E-Glass Fabric
E-Glass Tape

AS Graphite Tape
HMS Graphite Tape
HTS Graphite Tape
T300 Graphite Tape
T300 Graphite Fabric

10



Fabrication Cycle

The fabrication stages outlined below are of specific interest in this fabrication technology:

Preimpregnation Method
Dispersion Coating

Solution Coating
N-Methyl Pyrrolidone
Dimethyl| Formamide
Methylene Chloride
Other

Hot Melt (Film)

Solvent Dispersal/Drying
Cycle Time

Temperature

Consolidation Methods
Temperature Range
Pressure Range

Dwell Time

Thermoforming
Vacuum Forming
Vacuum and Plug
Vacuum and Matched Dies

Material System Properties

The material properties desired after prepregging, consolidating and postforming the reinforced
laminates are listed below:

Physical Properties
Fiber Volume
Density
Coefficient of Linear Thermal Expansion

Heat Distortion Temperature @ 264 psi

Mechanical Properties
Tensile Strength
Tensile Modulus

Compressive Strength

1"



Compressive Modulus
Flexural Strength
Flexural Modulus
Interlaminar Shear
In-Plane Shear

Shear Modulus

2. GENERAL SCREENING, BASE POLYMERS

Basic polymers and their specific products have been reviewed in a general sense and the ad-
vantages and disadvantages of each are noted in Table 3.

3. SPECIFIC DATA SOURCE REVIEW

Previous investigators have selected one or more thermoplastic resin system and reinforced
them with one or more continuous fiber reinforcement system and performed processing
trials, measured mechanical properties and evaluated the effects of environmental exposure ¢n
the mechanical properties. Most of the work has been performed using high pressure post-
forming methods.

Matrix Material Evaluations

Materials were reviewed and compared by prior investigators in selecting best candidates for
process evaluation and engineering property measurement when reinforced with low elongation
continuous fibers. Resins evaluated and systems selected are shown in Table 4, with reasons
for rejection, when known.

Matrix/Fiber System Evaluations

The selected candidate matrices have been used in preimpregnation, processing, postforming
and mechanical properties evaluation. Material system evaluation results are presented in
Table 5.

12
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TABLE 3. GENERAL SCREENING OF BASE POLYMERS

BASE POLYMER

MATERIAL TYPE
OR DESIGNATION

PRO

CON

"Styrenics"

Fluorocarbon
Polymers

Polyvinylchloride

Sulfones

ABS

Styrene—-Acrylo-
Nitrile

Ethylene-Tetra-
Fluoroethylene
Copolymer
Tefzel 200

Rigid PVC

Polysulfone
Udel

Polyphenyl-
Sulfone
Radel

Polyethersul-
fone
Viltrex

Polyarylsulfone
HC3601

Good Process-
ability
Low Cost

Good Process-
ability
Low Cost

Exceptional
Chemical
Resistance

Nonflammable
Relatively
Low Cost

Good Engineer-
ing Properties
Low Creep

High Impact

Good Engineer-
ing Properties
Low Creep

Good Engineer-
ing Properties
Low Creep

Low Softening
Point

Low Strength
Attacked by
Organic Sol-
vents

Low Softening
Point

Low Strength
Attacked by
Solvents

Hard & Rigid
Trim Problems

High Cost (?)
Creep

Low Softening
Temperature
Solvent Attack
by Ketones,
Some Chlorin-
ated & Aromat-
ic Compounds,
Esters

Attacked by
Ketones, Chlor-
inated and
Aromatic
HydroCarbons

(Improved)

Attacked by

Ketones, Some
Halogenated &
Aromatic Hydro+t
Carbons

FORM 46264 (2/66)
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TABLE3.GENERALSCREENHMEOFBASEPOLYMERS—(bnﬁmmd

MATERIAL TYPE

BASE POLYMER OR DESIGNATION PRO CON
Polyphenylene Sulfide PPS Good Wetting High
Ryton Good Chemical Consolidation
Resistance Temp (>700°F)
Nonflammable Difficult to
Process
PolyPhenylene Oxide PPO Toughened Attacked by
Noryl Polystyrene Chlorinated
Added Hydrocarbon
Good Mechanical} Solvents and
Properties Ketones
Polyamide Nylon 6/6 Good Chemical Reduced High
Nylon 6 Resistance Temperature
Nylon 6/10 Properties
Nylon 6/12 High Water
Nylon 11 Absorption
Nylon 12 Rate and Plast-
icization

Acetal Polymers &

Co-Polymers

Polyolefins

Thermoplastic
Polyesters

Acetal Co-Poly-
mer

Celcon M90
Kematal

Acetal Homo-
polymer
Delrin

Polyethylene
Hostalen

Alathon
Polypropylene

Ethylene Co-
Polymer with
Ionic Inter-
Chain Links
Suriyn
Polybutylene
Terephthalate
Tenite 6 PRO
Celanex 2001

Valox 310

Deroton Tap
10

Dular

Hytrel

Good Chemical
Resistance

Good Mechanical
Properties

Good Mechanicall
Properties

Good
Processability

Good Chemical
Resistance

Good Water
Resistance
Good Mechanical
Properties

Fiber-Matrix
Achesion
Problems

Fiber-Matrix
Adhesion
Problems

Low Strength
(vs Epoxy)
Attacked by
Hydro-Carbons.
Limited Useful
Temperature
Range.

Poor Properties

Locw Deflection
Temperature
Under Load
Attacked by
partly haloge-

nated Hydrocarbon

Sclvents
Flammability
Problem on Som?

FORM 46284 (2/656)
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TABLE 3. GENERAL SCREENING OF BASE POLYMERS — Continued

BASE POLYMER

MATERIAL TYPE
OR DESIGNATION

PRO

CON

Polycarbonate Lexan Good Mechanical| Attacked by
Properties Chlorinated
Hydrocarbon
and Ketone
Solvents
Polyimides NR150A Zxcellent High| Cost
150B Temperature Consolidation
150C Properties Process is
Sablon 1010 Film Castable High Tempera-
Sablon 055 from DMF ture
66-1-2
Alloys PVC/Acrylic Melt Extrudes Relatively Low
DKE 450 or Solvent Useful Temper-
KYDEX Coats ature (200°F)
Self Extin- Soluble in THF
guishes and Cyclohexa-
none
Phenoxy PKHS Low Cost Attacked by

Good Process-
ing

Ketones, Chlor-
inated Hydro-
Carbon Solvents

FORM 46284 (2/66)
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TASK I
ESTABLISH RELATIONSHIP BETWEEN PROCESSING
PARAMETERS AND SELECTED MATERIAL PROPERTIES

Work performed by Boeing Aerospace! has identified a strength reduction associated with heat-
ing preconsolidated laminates to forming temperatures and forming with vacuum/air assist.
Table 1 establishes a test matrix to determine whether a correlation exists between postforming
temperature and pressure on consolidated blanks during heat-up and postforming pressure

with respect to flexural strength of the resulting laminate. Figure 1 is a photograph showing
the attachment of a thermocouple to a 5-ply laminate. Figure 2 is a photograph showing a
consolidated blank during the thermoforming process.

Flexural testing was performed in accordance with ASTM D790-71 (reapproved 1978),
“Standard Test Methods for Flexural Properties of Plastics and Electrical Insulating Materials”,
except that four specimens were tested from each laminate for this screening program.

For the required short-beam shear testing, specimens were built up by {(250°F cure) film
adhesive bonding of three thicknesses (see Appendix ""A’’) and tested in horizontal shear by
the standard test method ASTM D2344-76, " Apparent Interlaminar Shear Strength of Parallel
Fiber Composites by Short-Beam Method"’, except that the laminates were prepared for test
using the processed postformed material, not ring-type specimens. This approach has been
used by previous investigators since NOL rings are not representative of the process.

Four Point Flexural Tests

Flexural testing was accomplished under the standard test procedure stated above in accord-
ance with Method |1 — a four point loading system utilizing two load points equally spaced
from their adjacent support points, with a distance between load points of one third of the
support span (Figure 3). All specimens had commonality in these values:

Fiber orientation 09, 90°
Specimen length 2.0 In. (Nom)
Specimen width 0.50 In. £ 0.02
Support Span 1.00 In.

Load Span 0.33 In.

Rate of cross lead motion 0.05 In./Min

Hexcel Prepreg 5 ply laminate
consolidation conditions 600°F, 100 Psig — for 30 minutes

Results of four point flex testing on 5 ply Kevlar 49 type 285 fabric/polysulfone (P1700) are
summarized in Table 6. Individual specimen dimensions and test results are given in Table 7.

When a beam is loaded in flexure at two central points (1/3-span) and supported at two outer
points, the maximum stress in the outer fibers occurs between the two central loading points
that define the load span. This stress may be calculated for any point on the load-deflection
curve for relatively small deflections by the following equation:
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Figure 3. Four-Point Loading System for Flexural Testing of 5-Ply Laminate
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S = PL/bd?

where:
S = stress in the outer fiber throughout load span (psi)
P = load at a given point on the load-deflection curve (LbF)
L = supportspan (In.)
b = width of beam (In.)
d = depth of beam (In.)

The tangent modulus of elasticity is the ratio, within the elastic limit of stress to corresponding
strain and will be expressed in pounds per square inch. It is calculated by drawing a tangent

to the steepest initial straight-line portion of the load-deflection curve and using the following
equation:

E,, = 0.21L3m/bd3

where:
E, = modulus of elasticity in bending (psi)
L = supportspan (In.)
b = width of beam (In.)
d = depth of beam (In.)
m = slope of the tangent to the initial straight-line portion of the load-deflection

curve, |b/in. of deflection.

Shown in Figure 4 are photographs of thermoforming molds used in the postforming of con-
solidated Kevlar 49/Polysulfone blanks.

Figure 5 is a photograph showing the finished blank number 10 after the postforming process,
with water-jet cutting lines marked on it. All testing in Task I for specimens processed under
these postforming conditions (650°F and vacuum plus light die pressure) were cut from the
blank shown in Figure 5.
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TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN

Specimen Group — Control
No Postforming Operation
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span =0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 109)
C—1 0.039 0.5110 0.15 32 41,172 3.05
Cc-2 0.039 0.5158 VOID
c-3 0.040 0.5158 0.125 36 43,622 3.56
Cc—4 0.039 0.5210 0.15 36 46,691 3.62
C-5 0.041 0.5200 0.125 37 42,328 3.91
Avg 43,453 3.54
o¥ 2,379 0.36

*

¢ = Standard Deviation (with N-1 weighting)
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TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 1
450°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Keviar 49
Style 285 Fabric/P1700 Polysuifone

*

g = Standard Deviation (with N-1 weighting)

36

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff {in.) (Ibs) (psi) (psi x 109)
1-1 0.044 0.5178 0.1375 47 46,885 4.19
1-2 0.044 0.5202 0.125 47 46,668 4.17
1-3 0.043 0.5180 0.1375 46 48,028 N/A
1-4 0.043 0.5190 VOID
1-5 0.043 0.5180 0.1375 46 48,028 4.08
Ava 47,402 415
ag* 728 0.06




TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 2
500°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Mead Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 10°)
2—1 0.043 0.5210 0.125 40 41,623 4.46
2-2 0.043 0.5242 0.150 38 38,206 4.84
2-3 0.043 0.5234 0.125 38.5 39,782 4.84
2-4 0.043 0.5218 0.175 - 30.5 31,613 4.45
Avg 38,031 4,65
o* 4,391 0.22

*

o = Standard Deviation (with N-1 weighting)
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TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 3
550°F, Vacuum Only

Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

*o = Standard Deviation {(with N-1 weighting)

38

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (Ibs) (psi) (psi x 108)
3-1 0.044 0.5078 0.100 26 26,447 3.73
3-2 0.043 0.5092 0.125 32 33,988 4.40
3-3 0.043 0.5132 0.125 36 37,938 4.94
3—-4 0.043 0.5142 0.1125 31 32,606 4.93
Avg 32,645 4.51
a* 4,768 0.59




TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 4
600°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 28& Fabric/P1700 Polysulfone

*g "= Standard Deviation (with N-1 weighting)
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Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. {in.) (in.) Dropoff (in.) (Ibs) (psi) (psi x 106)
4-1 0.047 0.5180 0.100 22 19,226 3.44
4-2 0.046 0.5180 0.1125 38 34,669 3.33
4-3 0.047 0.5160 0.100 39 34,215 3.14
4-4 0.047 0.56202 0.125 38.5 33,504 3.30
Avg 30,404 3.3
o* 7,467 0.12




TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 5
650°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span=0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) (Ibs} (psi) (psi x 105)
51 0.054 0.5098 0.100 49 32,962 2.02
5-2 0.052 0.5070 0.0875 31 22,612 2.22
5-3 0.052 0.5138 0.100 38 27,352 2.79
5—4 0.053 0.5144 0.100 356 24,222 2.11
Avg 26,787 2.29
o* 4,563 0.35

*

o = Standard Deviation (with N-1 weighting)
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Specimen Group — No.g

TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Length = 2.0 in.
450°F, Vacuum Plus Light Die Pressure Support Span = 1.0 in.
Tested per ASTM D790,

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load L.oad Strength Modulus
No. (in.) (in.) Dropoff {in.) (lbs) (psi) (psi x 1016)
6—1 0.051 0.5114 0.125 57 42,852 3.47
6-2 0.052 0.5120 0.100 58.5 42,255 3.41
6-3 0.054 0.5132 0.100 66 44,103 3.38
6—4 0.053 0.5132 0.100 65 - 45,090 3.30
Avg 43,675 3.39
o* 1,270 0.07

*

o = Standard Deviation (with N-1 weighting)
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TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 7 Specimen Length = 2.0 in.
500°F, Vacuum Plus Light Die Pressure Support Span = 1.0 in.
Tested per ASTM D790, Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min

5 Ply Laminated Kevlar 49

Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (Ibs) (psi) (psi x 108)
7-1 0.043 0.5074 0.1375 39.56 42,103 4,16
7-2 0.043 0.5140 0.125 36.5 38,405 4.11
7-3 0.043 0.5156 0.1375 39 40,909 3.93
7-4 0.043 0.5170 0.100 36.5 38,183 N/A
Avg 39,900 4.07
o* 1,919 0.12

*

o = Standard Ceviation (with N-1 weighting)

42




TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No.8

550°0F, Vacuum Plus Light Die Pressure

Tested per ASTM D790,

Specimen Length = 2.0 in.

Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
B Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

*

o = Standard Deviation (with N-1 weighting)
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Max
Deflection Max
Specimen 1 w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) (Ibs) (psi) (psi x 10)
8—-1 0.040 0.5100 0.1375 39.5 48,407 3.69
8-2 0.042 0.5100 VOID
8—-3 0.043 0.5156 0.100 28 28,370 4.10
8—4 0.045 0.5170 0.075 22 21,014 N/A
8—5 0.045 0.5164 0.100 22.1 21,134 3.21
Avg 29,981 3.67
a* 12,891 0.63




TABLE 7.

Specimen Group — No. 9

600°F, Vacuum Plus Light Die Pressure

Tested per ASTM D790,

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN {Continued)

Specimen Length = 2.0 in.

Support Span = 1.0 in.

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

*o = Standard Deviation {with N-1 weighting)
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Max
Deflection Max
Specimen 1 w Before Load Load Strength Modulus
No. {in.) (in.) Dropoff {in.) {lbs) {psi) {psi x 109)
9-1 0.044 0.5100 0.100 32 32,410 3.79
9-2 0.044 0.5082 0.100 28 28,459 3.88
9-3 0.045 0.5086 0.125 30 29,129 3.62
9-4 0.047 0.5090 0.100 28 24,903 3.18
9-5 0.046 0.5086 0.070 29 26,947 3.39
9-6 0.045 0.5080 0.100 31 30,135 3.99
Avg 28,664 3.64
o* 2,590 0.31




TABLE 7.

Specimen Group — No. 10

650°F, Vacuum Plug Light Die Pressure

Tested per ASTM D790,

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Length = 2.0 in.

Support Span = 1.0 in.

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 108)
10-1 0.040 0.5112 0.175 32 39,124 3.59
10-2 0.043 0.5114 0.0875 26 27,496 3.14
10-3 0.043 0.5118 0.100 24 25,361 3.14
104 0.043 0.5100 0.100 24 25,451 3.23
Avg 29,358 3.3
o* 6,585 0.21

*¢ = Standard Deviation (with N-1 weighting)
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Horizontal Shear Tests

The horizontal shear test specimen is center-loaded as shown in Figure 8. The specimen ends
rest on two supports which allow lateral motion, the load being applied by means of a loading
nose directly centered on the midpoint of the test specimen. Although the apparent shear
strength obtained by this method cannot be used as a design criteria, it can be utilized for
comparative testing of composite materials. This apparent shear strength may be calculated
by the following equation:

Sy = 0.75 Pg/bd

where:
Sy = shear strength (psi)
Pg = breaking load (IbF)
b = width of specimen (in.)
d = thickness of specimen (in.)

The horizontal shear test specimens were fabricated utilizing 3M AF163 film adhesive (250°F
cure) to ‘stack-up’’ three five-ply laminates of Kevlar 49, Style 285 fabric/P1700 polysulfone
with the fiber orientation being in the 0°, 90° direction (see Appendix A). This three-laminate
“stack-up’’ procedure was accomplished subsequent to the five-ply laminate thermoforming
{postforming) operation. Other areas common to all specimens were:

Specimen width 0.250 £ 0.010

Specimen length 7 x thickness, as prescribed by (3)
Support span 5 x thickness, as prescribed by (3)
Rate of crosshead motion 0.05 In./Min

Hexcel prepreg 5-ply laminate )
consolidation conditions 600°F, 100 PSIG — for 30 minutes

Results of three point interlaminar shear tests are summarized in Table 8. Individual spzcimen
dimensions, and test results are given in Table 9. NOTE: Not all specimens exhibited zhe
classical midthickness horizontal shear failure mode; however, a comparison of the maximum
load levels achieved by those that did fail in the classical manner with the maximum load levels
achieved by those specimens that did not exhibit the classical failure mode, demonstrates values
commensurate with each other. Therefore, it is assumed that all failures are valid interlaminar
shear failures. Prior experience with Kevlar fabrics with epoxy and thermoplastic resins also
has demonstrated similar nonclassical failure modes.
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Figure 8. Three Point Loading System for Interlaminar Shear Testing
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TABLE 8. THREE POINT INTERLAMINAR SHEAR TEST (4) — SUMMARY

Interlaminar Shear Streng:h

Specimens Postferming  Postforming Pressure (psi)

Group 1.D. Qty Temp (°F) VAC (1) VLDP (2) Group Avg o (3)
Control 5 No Postforming 2217 77.65
1 5 450 X 2469 35.85

2 5 500 X 1719 32.92

3 5 550 X 1655 19.95

4 5 600 X 1357 59.15

5 5 650 X 1917 215.37
5A 5 650 X 1799 62.00

6 5 450 X 1725 68.63
6A 6 450 X 1835 110.66

7 5 500 X 1851 52.14

8 5 550 X 1547 48.90

9 5 600 X 1441 46.57
10 5 650 X 1438 27.50

(1)  VAC = Vacuum Pressure Only.
(2) VLDP = Vacuum Plus Light Die Pressure.
(3} o = Standard Deviation (with N-1 weighting).

(4)  All testing was done at room temperature.

NOTE — Strength values exhibited herein are to be used for comparative purposes only and
not as design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN

Specimen Group — CONTROL Tested Per ASTM D2344-76:

(No Thermoforming) Recommended Supp-ort Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
c—1 0.133 0.255 95 2101
c—2 - 0.132 0.256 101 ‘ 2242
c-3 0.132 0.254 99 2215
c—4 0.132 0.257 100 2211
c—5 0.132 0.255 104 2317
Avg 2217
o 77.65

*o = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 1 Tested Per ASTM D2344-76:
450°F, Vacuum Pressure Only Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. : (in.) {in.) (Ibf) Shear Strength (psi) (1)
1-1 0.130 0.254 107 2430
1-2 : 0.130 0.254 108 2453
1-3 0.131 0.264 112 2524
1-4 0.131 0.249 108 2483
1-5 0.131 0.254 109 2457
Avg 2469
o 35.85

*g = Standard Deviation {(with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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Specimen Group —

NO. 2

500°F, Vacuum Pressure Only

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. {in.) (in.) (1bf) Shear Strength (psi) (1)
2-1 0.133 0.265 79 1747
2-2 0.134 0.255 78 1712
2-3 0.134 0.256 78 1705
24 0.134 0.254 76 1675
2-5 0.134 0.255 80 1756
Avg 1719
ag* 3292

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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Specimen Group —

NO. 3

550°F, Vacuum Pressure Only

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
3—1 0.133 0.254 75 1665
3-2 0.134 0.254 74 1631
3-3 0.134 0.249 74 1663
3-4 0.134 0.253 74 1637
3-56 0.136 0.253 77 1678
Avg 1655
o* 19.96

*o = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST

SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 4

600°F, Vacuum Pressure Only

Tested Per ASTM D2344-76:
Recommended Support Span = bt
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
4-1 0.141 0.255 61 1272
4-2 0.141 0.256 65 1351
4-3 0.141 0.256 67 1392
4-4 0.140 0.255 68 1429
4-5 0.140 0.256 64 1339
Avg 1357
o 59.15

*o = Standard Deviation {(with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO.5 Tested Per ASTM D2344-76:
Recommended Support Span = bt
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

650°F, Vacuum Pressure Only

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
5—1 0.164 0.257 104 1851
o 0.164 |  0.257 08 1744
5—3 0.165 0.254 118 2112
5—4 0.163 0.256 121 2175
5—5 0.163 0.257 95 1701
Avg 1917
a* 215.37

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 5A Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head

Motion = 0.05 in./min

650°F, Vacuum Pressure Only

Specimen t w L.oad
No. (in.) (in.) (Ibf) Shear Strength (psi)
5A—1 0.156 0.260 93 1720
5A-2 0.156 0.259 98 1819
5A-3 0.156 0.259 95 1763
5A—-4 0.155 0.255 VOl D
BA-5 0.156 0.258 97 1808
5A—-6 0.157 0.256 101 1885
o¥ 62.0

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.

56




TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen Group — NO. 6
450°F, Vacuum Plus Light Die Pressure

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
6—1 0.154 0.259 87 1636
6—2 0.155 0.253 88 1683
6—3 0.155 0.257 95 1789
6—4 0.156 0.257 92 1721
6—-5 0.156 0.257 96 1796
Avg 1725
o 68.63

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t

Specimen Group — NO. 6A

450°F, Vacuum Plus Light Die Pressure

Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
6A—1 0.157 0.255 96 1798
6A—2 0.157 0.257 98 1822
6A—3 0.156 0.259 93 1726
6A—4 0.153 0.258 101 1919
6A—5 0.157 0.259 94 1734
6A—6 0.155 0.260 108 2010
Avg 1835
o* 110.66

*g = Standard Deviation {with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.

58




TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 7 Tested Per ASTM D2344-76:
. . Recommended Support Span = 5t
o
500°F, Vacuum Plus Light Die Pressure Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) {in.) (Ibf) Shear Strength (psi) (1)
7—1 0.132 0.257 84 1857
7-2 _ 0.134 0.257 85 1851
7-3 0.134 0.259 88 1902
7-4 0.134 0.260 82 1765
7-5 0.135 0.260 88 1880
Avg 1851
or 52.14

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 8 Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

550°F, Vacuum Plus Light Die Pressure

Specimen t w Load
No. {in.) (in.) {Ibf) Shear Strength (psi) (1)
8—1 0.132 0.255 66 1471
8-2 0.132 0.260 71 1552
8-3 0.132 0.259 70 1536
8—4 0.132 0.259 73 1601
8-5 0.134 0.256 72 1574
o* 48.90

*g = Standard Deviation {with N-1 weighting)

{1) NOTE: Use for comparative purposes only, not design criteria.

60



Specimen Group —

NO. 9
600°F, Vacuum Plus Light Die Pressure

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Moticn = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
9-1 0.136 0.256 65 1400
9-2 0.136 0.254 70 1520
9-3 0.137 0.255 66 1417
94 0.137 0.255 67 1438
9-5 0.138 0.255 67 1428
Avg 1441
o* 46.57

*g = Standard Deviation {with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 10 Tested Per ASTM D2344-76:
650°F, Vacuum Plus Light Die Pressure Recommended Suppprt Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
10-1 0.134 0.253 62 1438
10-2 0.134 0.254 65 1432
10-3 0.134 0.256 64 1399
10—4 0.134 0.256 66 1443
10-5 0.135 0.256 68 1476
Avg 1438
o* 27.50

*¢ = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TASK Il
DETERMINATION OF SIMULATED R&M SOLVENT ATTACK EFFECTS
ON PROTECTED AND UNPROTECTED LAMINATES

One of the unanswered questions with regard to polysulfone practicality in U.S. Army field
operations is its susceptibility to attack by certain solvents. Methyl-ethyl-ketone and acetone

are available to maintenance personnel and might be improperly used during repair operations,

such as paint stripping or adhesive bonding preparation. Data are available on property reduc-

tion of reinforced polysulfone after twenty-four-hour immersion in solvent, but this is obviously

an extreme and unrealistic criterion. Therefore, it was proposed that the degree of damage be
assessed in the possible circumstance wherein a solvent soaked rag is rested upon a reinforced
polysulfone laminate and remains for two-hours or until dry.

The effect of both MEK and acetone was examined on thin-skin two-ply laminates in both the
painted and unpainted conditions. The Kevlar 49 style 285 fabric/polysulfone or polyphenyl-
sulfone laminates prepared for this investigatory task were consolidated at 600°F and 100 psi
for 30 minutes. To permit testing thin laminates, honeycomb sandwich panels were prepared
by bonding the two-ply laminate skins to HRP-10 4.0 PCF honeycomb core with AF126
Grade 10 film adhesive and hot press curing at 30-50 psi at 250°F for 90 minutes.

For reasons of material availability and high material cost, we elected to use the two-ply {285

style Kevlar 49 fabric/polysulfone or polyphenylsulfone) laminate on only the compression

face of the sandwich panel. Five available substitutes for use on the tension face of the sand-
wich panel were analyzed. One, two and three-ply laminates of readily available, in-house, ma-
terial were checked in order to provide a minimum tensile strength of two times the Kevlar
compression face strength and thus ensure a failure in the Kevlar 49/thermoplastic material.

The chosen substitute was a precured three-ply fiberglass {1002 scotchply/epoxy) laminate,

oriented at 0°/90°/0°.

Flexural testing was performed in accordance (per contractual requirement) with MIL-A-
25463 — Military Specification — Adhesive, Metallic Structural Sandwich Construction;
Section 4.6.7 — Normal Temperature Sandwich Flexure Test. Three exceptions to this test
method were taken; three to five specimens per group were tested instead of six as recommend-
ed by MIL-A-25463, test set up and specimen size also differed from those prescribed in the
military specification. Number of specimens and maximum size was dictated by the amount
of the available material. Test set up and specimen size may be noted in Figure 10.

Utilizing the loading diagram and description of sectional areas shown in Figure 11, the max-
imum beam flexural strength was determined from the face sheet bending stress equation for
the Kevlar 49/thermoplastic laminate as follows:

where:
M = maximum bending moment = Lza-
h = distance between the upper and lower laminate centroidal axes =

0.475 + {0.018) + {0.03) = 0.499
2 2
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w specimen width

t

thickness of K49/polyphenylsulfone or polysulfone laminate = 0.018

Introducing these values into the bending stress equation a simplified equation now develops
for the sandwich beam bending stress:

___Pa_ P (4.5)
fo, =2hwt; = 270.499) W (0.018
P
f,, = 250.5—
2 w

Relative stiffness of the (nonhomogeneous material) sandwich beams may be obtained by the
formula:

_ P/2a
24y

El (312 — 4a2)

El = (P/y) (%) (3L2 — 422)

where:
P/y = slope of the tangent to the initial straight line portion of the load-deflection
curve (Ibs per inch of deflection)
a = 4.5In. (See Figﬁre 11)
L = 13.0 In. (See Figure 11)

Substituting these values into the above equation, a reduced equation is now obtained for the
relative stiffness of the honeycomb sandwich beams:

4.5 2y _ 2
El (P/y) (7@) [3(134) — 4 {4.5%) ]

El

39.9375 (P/y)

Results of four point flex testing on honeycomb sandwich beams painted and unpainted, with
and without exposure to solvent soaked rags, are summarized in Table 10. Individual specimen
dimensions and test results are given in Table 11.

Specimens were painted in accordance with MIL-F-18264D — ""Finishes: QOrganic, Weapons
System, Application and Control of” — 23 April 1971.

Two primer coats were applied in accordance with MIL-F-23377 — “’Primer Coating, Epoxy —
Polyamide, Chemical and Solvent Resistant, for Weapons Systems’’ — 7 August 1962.

Two top coats were applied per 